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Calculations of Electron Inelastic Mean Free Paths

for 31 Materials

S. Tanuma,* C. J. Powell and D. R. Penn
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We present new calculations of electron inelastic mean free paths (IMFPs) for 200-2000 eV electrons in 27
elements (C, Mg, Al, Si, Ti, V, Cr, Fe, Ni, Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, Au
and Bi) and four compounds (LiF, SiO,, ZnS and Al,O;). These calculations are based on an algorithm due to
Penn which makes use of experimental optical data (to represent the dependence of the inelastic scattering prob-
ability on energy loss) and the theoretical Lindhard dielectric function (to represent the dependence of the scattering
probability on momentum transfer). Our calculated IMFPs were fitted to the Bethe equation for inelastic electron
scattering in matter; the two parameters in the Bethe equation were then empirically related to several material
constants. The resulting general IMFP formula is believed to be useful for predicting the IMFP dependence on
electron energy for a given material and the material-dependence for a given energy. The new formula also appears
to be a reasonable but more approximate guide to electron attenuation lengths.

INTRODUCTION

Knowledge of the values of inelastic mean free paths
(IMFPs) and attenuation lengths (ALs) for low-energy
electrons in solids is important for quantitative surface
analysis by AES and XPS as well as for determining the
surface sensitivity of other electron-spectroscopic
methods of surface characterization. Although the terms
IMFP, AL and escape depth are frequently used inter-
changeably, each has a separate meaning.! The IMFP
can be obtained from theory and certain types of experi-
ments, while the AL is obtained from overlayer-film
experiments and with use of a model in which the effects
of elastic electron scattering are ignored. The escape
depth is the product of the AL and the cosine of the
angle defined by the analyzer direction and the surface
normal in an AES and XPS experiment. The IMFP will
be systematically larger than the AL by about 15-30%,
the difference being greatest for high atomic numbers
and low electron energies.>

One method for quantitative surface analysis by AES
or XPS requires knowledge of the AL dependence on
material at a given electron energy (e.g. for a ‘matrix
correction’ of elemental sensitivity factors). Another
method for quantitative analysis requires knowledge of
the AL dependence on electron energy for a given
material (e.g. in comparisons of peak intensities at dif-
ferent electron energies). Unfortunately, the AL data
now available are not sufficient for many applications
and, more importantly, the available data are either of
uncertain or inadequate accuracy.! Empirical AL for-
mulas,>* which are certainly convenient and useful
guides, are based on these AL data and other assump-
tions which limit their accuracy.’

We present here new calculations of IMFPs for 31
materials for electron energies between 200 and 2000

* Permanent address: Central Research Laboratories, Nippon
Mining Company Ltd., 3-17-35 Niizo-Minami, Toda, Saitama 335,
Japan.

¢V, part of the range of interest for many AES and XPS
applications. These calculations are based on an algo-
rithm due to Penn® in which experimental optical data
are used to give information on the inelastic scattering
probability as a function of energy loss and in which
theory is used to describe the dependence of the scat-
tering probability on momentum transfer. This hybrid
approach enables us to take advantage of the available
optical data (that can be checked for internal consis-
tency by various sum rules) and avoids the necessity for
making assumptions about the relative strengths of
various valence-electron and core-electron excitations.S

The calculated IMFPs were found to be well
described by the Bethe equation for inelastic electron
scattering. We then found empirically that the two
parameters in the Bethe equation for each material
could be simply related to other material constants.
These relationships have led us to a general IMFP
formula which we believe will be useful for predicting
IMFPs in other materials. Since AL data of the
required range and accuracy are not available, the new
formula is suggested as a reasonable but more approx-
imate guide to ALs.

We describe the IMFP theory and our selection and
review of the optical data which are used for the IMFP
calculations. The IMFP results are presented for 27 ele-
ments and four compounds, materials for which suitable
optical data were conveniently available. We describe
our fits to the Bethe equation and show how we have
obtained the new general formula. Our IMFP results
and values from the general formula are then compared
with the IMFP formula of Szajman et al.,® the AL for-
mulae of Seah and Dench,? and the results of AL mea-
surements. A brief account of our results has been
published previously.®

THEORY

We describe here the Penn algorithm? for calculation of
IMFPs which should be applicable to a wide range of
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materials and which, in its general form, should be
useful for all electron energies. In the present work, we
make use of an approximation which limits the IMFP
calculation to electron energies greater than about 200
ev.

The algorithm is based on a model dielectric function
for which the momentum dependence is determined by
the use of the statistical approximation. The statistical
approximation was first applied to IMFP calculations
by Tung et al.'® who approximated the IMFP directly
whereas Penn approximated the dielectric function. The
resulting model dielectric function at zero momentum
transfer was equated with the measured optical dielec-
tric function. The concept of using experimental optical
data in IMFP calculations was developed by Howie
and Stern, and by Powell.®1!

The IMFP for an electron of energy E, = #%k%/2m in
a free-electron gas is

hk h
Ak ) = (‘,;)<Z_|—A7.(k—rs)l) ¥

where r, is the average distance between valence elec-
trons in units of the Bohr radius a,; that is, r, =
(37n)'3a; !, where n is the valence electron density. The
imaginary part of the electron self-energy is given by
Quinn'? as

1

e(q, Ey, — Ey_; rs)
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where Ep is the Fermi energy and ¢ is the Lindhard
dielectric function expressed. as a function of momentum
transfer g, energy transfer E, — E,_,, and r,. This
approximation neglects the vertex correction, self-
consistency, exchange, and correlation, but gives rea-
sonable values for the IMFP in free-electron-like
materials.’? A free-electron-like material is one in which
the loss function —Im[1/e(q =0, w)], as determined
from optical or electron-energy-loss experiments, shows
a dominant peak due to well-defined volume plasmons
which have an energy close to the free-clectron value
hw, = h(4rnne*/m)'/2. Equations (1) and (2) can be
derived in a fairly simple way by calculating the scat-
tering rate of an electron in a free-electron gas using the
Born approximation.!#:13

The dielectric function has not been calculated from
first principles for non-free-electron metals such as the
transition and noble metals. Consequently, (2) cannot
be employed to determine the IMFP. Tung et al.® have
used the statistical approximation developed by Lind-
hard and co-workers!® to calculate the IMFP. The sta-
tistical approximation as applied to calculating the
electron IMFP assumes that the inelastic scattering of
an electron in a volume element d3r of the solid can be
approximated by the scattering appropriate to a free-
electron gas of the electron density n(r), in that volume
element. Thus, the statistical approximation gives the
inverse IMFP as

A (k) = I%r AL ks r ) (3a)

where
rr) = [3nn(n]a;* (3b)

and the region of integration in (3a) is a Wigner—Seitz ~

cell of volume Q. For simplicity, the charge distribution
is assumed to be spherically symmetric and the Wigner—
Seitz cell is replaced by a sphere of volume Q.

In order to take advantage of the generally available
values of &), the experimentally determined optical
dielectric function, the response function é(g, w) of the
material under consideration is approximated rather
than A7'(k). In analogy with (3a), it is assumed that

= d—sr —_— (4a)
&(g, ) Q el o;rAr)°
where
r2(r) = [§an, ()] a; ! (4b)

Here, n,(r) is a pseudo-charge-density chosen to ensure
that

1 1
8(0, CO) =Im @ (5)

where e(w) is the optically measured dielectric function.
In (4), a fictitious charge density ny(r) is introduced

Im

(rather than the charge density n(r)) in order to make

use of the information contained in the experimental
&w). While there may be errors in the resulting func-
tional form of Im[1/e(g, w)], the errors in the resulting
IMFP values will be much smaller due to the later inte-
grations over g and .

The integration variable in (4a) is changed from r to
w,(r) where

4me? 1z
wylr) = ( = n,,(r)) ©)
so that (4a) becomes
© 1
m = | dw,Gw,)Im — 7
9, I PO oy O
If g is set equal to zero and with the use of
1 n
Im———= — = - :
m 00, o @) 5 @p oo — w,) ®)
(5) yields
6) = — —Im —— ©)
»= nw  &w)

The imaginary part of the self-energy is now obtained
by replacing Im(l/e;) in (2) by Im(1/e) in (7). The
resulting equation can be written as :

eZ Ex — Ef d3q
Mk) = — Py J; d(hw)f o
1

x Im —— 6(hw — Ey + E,_) (10)
&g, w)

The condition
hw=Ek—Ek_q (11)

restricts the region in (w, q) space over which the inte-
grations in (10) take place. Equation (11) describes a
collision in which an electron of energy E, makes a
transition to the state E,_, and loses energy fiw. In this
paper we assume that E, and E, _ are free-electron-like
because we restrict ourselves to energies E, > 150 eV.

\,
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Equation (11) then gives
2

h 2
ho < o (2kqg — g% (12)

where k is the initial momentum of the scattered elec-
tron. Equations (7), (9) and (10) yield

] eZ Ey —Ef d3q
M l(k) = J; d(l)p G(wp) ﬁ J; d(hw) f ?

xIm —m—
gL(q’ W, wp)

The angular integrations in (13) are trivial and yield

© Ex - Ef
Mk) = J; da, G(a)p)<1w0 p L d(hw)

* dg 1
8 L ?Im<8L(q, w; w,))) (142)

qt = k{1 £ [1 - (hw/E)]"?} (14b)

We find empirically that, when E, is 200 eV or
greater, the quantity Im(1/g;) in (14a) can be replaced by
the single-pole approximation with a resulting loss of
accuracy in the computed IMFP of less than 3%. The
single-pole approximation is

1 T .2
G aio) = "2 0@ o) (5

Sho — E, + E,_) (13)

where

0,%(q) = @, + $[ve(w,)g]* + (hg?/2m>  (15b)

and ve(w,) is the Fermi velocity of a free-electron gas
with plasma frequency equal to ,. Use of (15) in (14)
yields

1 _
= Im ——
M) =3 f d(ho,lm - =)
7 ) 2 q1
x 1n<9¢2‘°!’@+f> (16)
3wp a2
where @, = hoy/Er, §=gq/ky and @,%q) = @,’

+(4/3)3* + 3*. The quantities §,, g, in (16) depend on
@, and are the values of g for which @(g) intersects the
boundary of the region given by @ < 2kg — g* and
o<k*—1 corresponding to the limits of integration of
the second and third integrals in (14a). Analytic expres-
sions for g, and g, are given in Appendix A of Ref. 5.
Thus, for energies E, above 200 eV, the IMFP can be
found from (16) rather than (14) and only a single inte-
gration rather than a triple integration is required.

At high incident electron energies, (16) must reduce to
the Bethe formula [(19) below]. In the energy range of
present interest, however, there does not appear to be a
simple analytic formula for M(k).

IMFP RESULTS

We present first an analysis of the optical data on which
our IMFP calculations are based. Our IMFP results
are given and then analyzed in terms of the Bethe equa-
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tion for inelastic electron scattering in matter. After
describing important aspects of the Bethe equation, we
discuss the energy dependence of our calculated IMFPs
and then present a general formula for IMFPs. Finally,
we compare the results of our IMFP calculations,
IMFP values from the general formula, predictions of
other IMFP and AL formulae, and available AL data.

Analysis of optical data

The calculation of IMFPs requires optical data over a
wide photon energy range, typically 1-2000 eV, the
upper limit here corresponding to the maximum elec-
tron energy for which IMFPs are to be computed. In
this phase of our work, we have made IMFP calcu-
lations for materials for which the needed optical data
had been tabulated over all or nearly all of the required
photon energy range.!7-2°

IMFP calculations have been made for the 27 ele-
ments and four compounds listed in Table 1. For over
half of these materials, there were gaps in the tabulated
optical data, often in the photon energy range 40-100
eV. We have made interpolations in such cases based on

Table 1. Errors in the f-sum rule (17) and the ps-sum
rule (18) for the indicated materials. Except
where noted, the integrals have been evaluated
for AE, ., typically equal to 100 keV

Error in Error in
f-sum rule ps-sum rule

Material (%) (%)
C 15 2
Mg 13 -3
Al 12 11
Si 1 -12
Ti -18 0
\) -20 5
Cr -13 6
Fe -9 9
Ni -1 6
Cu 2 0
Y 1 4
Zr -12 22
Nb -14 -~23
Mo -10 -4
Ru -13 4
Rh -6 8
Pd -12 -1
Ag 9 1
Hf ~4 -16
Ta 1 3
w -1 6
Re 4 19
Os -4 7
Ir -5 5
Pt 0 1
Au 13 0
Bi 6 -2
LiFe ~26 -4
Si0,® -12 -21
ZnS® -47 -29
AlL,0,° -13 —35

*AE .. in (17) is equal to 2000 eV for LiF, Si0O, and ZnS
and is equal to 1600 eV for Al,O,.
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Figure 1. Example of interpolation in the optical data for tita-
nium. The upper panel shows the refractive index n and the lower
panel the extinction coefficient k as a function of photon energy:
O data from Ref. 18; + data from Ref. 20; x data from Ref. 21.
The solid lines are interpolations of n and k between 30 and 100
eV.

atomic photo-absorption calculations.z! Figure 1 shows
an example of such an interpolation for titanium. The
refractive index n and the extinction co-efficient
k[&(w) = (n + ik)*] are tabulated for photon energies
between 0.1 and 30 eV in Ref. 19 and between 100 and
2000 eV in Ref. 21. The solid line in Fig. 1 shows inter-
polated values of n and k based on the atomic photo-
absorption data for k in Ref. 21 and a calculation for n
from the Kramers—Kronig dispersion relations.??

We have checked the internal consistency of the
optical data through use of the oscillator strength (f-
sum) and perfect-screening (ps-sum) sum rules.2?-24 The
f-sum can be expressed as an effective number of elec-
trons per atom or molecule Z

Zog = 2nH?Q,%) j " AE Im[ — 1/(AE)] d(AE) (17)
0

where Q, = (4nn, e?/m)'/%, n, = N, p/A is the density of
atoms or molecules, N, is Avogadro’s number, p is the
bulk density, 4 is the atomic or molecular weight, and
AE = hw is the energy loss in an inelastic scattering
event. When the upper limit in (17) AE,,,, = 0, Z 4
should be equal to Z, the total number of electrons per
atom or molecule.
The ps-sum rule, valid only in the limit ¢ — 0, is

AEmax
P =(2/7r)L (1/AE)Im[ —-1/¢(AE)] d(AE) (18)

When AE, . in (18) is equal to oo, P, should be unity.

Figures 2 and 3 show evaluations of Z; and P as a
function of AE ,, for Al, Cu, Ag and Au. The calculated
values of Z. exceed the expected values (the atomic
number) by 12, 2, 9 and 13 per cent, respectively. The
value of P for Al exceeds unity by 11 per cent but is
close to unity for the other three metals.

/Au/
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Figure 2. Plot of Z,,, versus AE,,,, from (17) for Al, Cu, Ag and
Au. The horizontal arrows on the right axis show the expected
values of Z,,, (the atomic number) when AE, = co.

Table 1 gives a listing of the errors in the f-sum and
ps-sum rules, that is, the differences between the com-
puted values of Z and P, and those expected from
(17) and (18) with E,,, = co. While these errors are less
than 10% for many materials, they can be as much as
47%. Note, however, that the generally larger errors for
the four compounds in Table 1 are associated with the
limited range of the available optical data and the con-
sequently smaller value of AE_,, in (17) and (18).

The errors listed in Table 1 give an indication of the
likely uncertainties of the optical data. As is apparent
from (17) and Fig. 2, the f-sum rule integration is influ-

1.2 T T T

Al

L
0.1 1 10

AE . (keV)

0 1
0.001 0.01

Figure 3. Plot of P versus AE, . from (18) for Al, Cu, Ag and
Au. The plots have been displaced vertically for clarity.
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enced appreciably by optical data in the 50-10000 eV

range; from (18) and Fig. 3, the ps-sum rule integration
is influenced mainly by optical data in the 2-50 eV
range. While there are a few materials in Table 1 which
have small errors in both sum rules, it is not surprising
that there are others that have small errors for one sum
rule and large errors for the other. There are also some
materials that have large errors for both sum rules. The
IMFP calculation, however involves an integration of
Im[ — 1/&(w)], as indicated by (16). The main contribu-
tion to this integration arises from the intermediate
energies, roughly 5-100 eV. The sum rule errors in
Table 1 therefore only give an approximate guide to
possible errors in the resulting IMFP values; other
sources of errors are discussed later.

IMFP calculations

Table 2 shows IMFP values calculated from (1) and (16)
for electron energies between 200 and 2000 eV using
experimental values for Im[—1/e(w)]. We will later

compare some of these values with the results of other
calculations and with AL data. The numerical values in
Table 2 for Al, Cu, Ag and Au differ from those pre-
viously reported® because a more accurate method of
numerical integration was used here.

Bethe equation for inelastic electron scattering

We introduce here the Bethe equation’ for inelastic
electron scattering since it and other related equations
will be used to analyse the dependence of the calculated
IMFPs on electron energy. Previous analyses?%2¢ have
shown that the Bethe equation provides a useful empiri-
cal description of the IMFP and AL dependences on
electron energy in the range of interest for AES and
XPS.

The Bethe equation for the total cross-section for
inelastic scattering at an electron energy E can be
written as follows:27

4na,’? 4c o E

Ot = (E/R) M tzot ln(T) (19)

- Table 2. Calculated IMFPs (in ingstroms) as a function of electron energy for 27

‘elements and four compounds

Electron

Inelastic mean free path (A)

energy (eV) [ Mg Al Si
200 8.2 8.1 6.2 7.6
300 10.7 10.5 8.1 10.0
400 13.2 12.8 9.8 12.2
500 15.6 15.1 115 143
600 17.9 17.3 131 164
700 20.2 19.5 14.7 184
800 22.3 216 16.3 20.3
900 245 237 17.9 223
1000 26.6 257 19.4 242
1100 28.7 278 20.9 261
1200 30.7 29.8 224 27.9
1300 32.7 31.8 239 29.8
1400 347 337 254 31.6
1500 36.7 35.7 26.8 334
1600 38.7 37.6 28.3 35.2
1700 40.7 39.5 29.7 37.0
1800 426 414. 341 38.8
1900 44.5 43.3 325 40.5
2000 46.4 452 339 423
Cu Y Zr Nb
200 6.4 7.4 6.5 75
300 7.6 9.7 85 9.6
400 8.9 11.8 104 11.6
500 10.1 13.9 123 136
600 113 159 14.0 155
700 126 17.8 16.7 17.3
800 13.8 19.7 174 -191
900 15.0 215 19.0 208
1000 16.2 233 20.6 225
1100 174 251 222 24.2
1200 18.6 26.9 237 258
1300 19.7 28.6 25.3 274
1400 209 30.3 26.8 29.0
1500 22.0 32.0 283 306
1600 23.2 337 29.8 32.2
1700 243 354 313 33.7
1800 254 37.0 327 36.3
1900 26.5 38.7 342 36.8
2000 2786 40.3 356 38.3

Ti

7.2 6.8 5.6 5.7 5.7
9.4 8.7 71 71 6.8
1.6 10.6 8.5 8.4 8.0
135 124 9.9 9.7 9.1
166 14.2 11.3 11.0 10.3
175 15.9 12.6 123 114
194 17.6 13.9 13.6 12.6
21.2 19.3 16.2 14.8 13.7
23.1 20.9 16.5 16.1 148
24.9 22,6 17.8 17.3 16.9
26.6 242 19.0 18.5 16.9
284 258 20.3 19.7 18.0
30.1 27.3 215 20.8 191
318 28.9 22.7 22.0 201
335 304 23.9 231 211
35.2 31.9 25.0 24.3 222
36.8 334 262 254 232
385 348 27.4 26.5 24.2
40.1 36.3 285 276 25.2
Mo Ru Rh Pd Ag
5.5 5.1 49 6.2 5.3
7.0 6.4 6.0 7.7 6.3
8.4 7.7 7.3 9.3 7.5
9.9 9.0 8.4 10.9 87 .
1.3 103 9.6 124 9.8
12.6 115 10.8 13.9 10.9
13.9 12.7 1.9 16.3 121
161 13.9 13.0 16.8 1341
16.4 16.1 14.0 1841 14.2
17.6 16.2 15.1 19.5 16.2
18.8 17.3 16.1 20.8 16.2
20.0 184 171 221 17.2
21.2 195 18.1 234 18.2
22.3 205 1941 24.6 1941
235 216 20.1 25.9 2041
24.6 226 21.0 271 211
25.7 23.6 22.0 28.4 22.0
26.8 24.6 229 296 230
27.9 25.7 239 30.8 239

v

Cr

Fe
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Inelastic mean free path (A)

Table 2.
Electron
energy (eV) Hf Ta w Re
200 8.0 5.4 49 4.2
300 10.0 6.7 6.0 5.0
400 11.9 79 7.2 5.9
500 13.7 91 8.2 6.8
600 155 10.3 9.3 7.6
700 17.2 114 10.3 8.5
800 18.8 12.6 11.3 9.3
900 205 137 12.3 10.1
1000 221 14.7 133 10.8
1100 23.7 15.8 14.2 11.6
1200 25.2 16.8 15.1 124
1300 26.8 17.9 16.1 13.1
1400 28.3 189 17.0 139
1500 29.8 19.9 179 14.6
1600 31.3 20.9 18.8 15.3
1700 328 21.9 19.7 16.1
1800 342 229 20.5 16.8
1900 35.7 238 214 175
2000 37.2 248 22.3 18.2
LiF Sio,
200 83 9.6
300 105 12.2
400 12.7 14.7
500 149 171
600 17.0 19.5
700 19.1 219
800 211 242
900 231 26.5
1000 251 28.7
1100 27.0 309
1200 29.0 331
1300 30.9 353
1400 32.8 374
1500 346 395
1600 36.5 41.6
1700 383 43.7
1800. 401 45.7
1900 41.9 47.8
2000 43.7 49.8

Os Ir Pt Au Bi
4.9 6.4 49 5.0 6.9
5.9 75 5.9 59 8.6
7.0 8.8 7.0 7.0 10.3
8.0 10.0 8.1 8.0 121
9.0 11.2 9.1 9.0 13.7
10.0 123 101 10.0 15.4
10.9 13.4 1.1 11.0 17.0
11.9 145 121 11.9 185
12.8 15.6 13.0 129 200
13.7 16.7 139 13.8 215
14.6 17.7 14.8 14.7 23.0
15.5 18.7 15.7 15.6 244
16.3 19.7 16.6 16.5 25.9
17.2 20.7 175 17.3 27.3
18.0 217 184 18.2 28.7
18.9 227 193 19.0 301
19.7 23.7 201 19.9 315
20.6 24.7 21.0 20.7 328
214 25.7 218 21.6 34.2
ZnS Al 0y
- 87 7.5
1.2 9.3
13.7 141
16.0 129
18.3 14.6
20.5 16.4
227 18.0
249 19.7
27.0 213
29.1 23.0
311 246
33.2 26.1
35.2 27.7
37.2 29.2
39.2 30.7
41.2 323
43.1 338
45.1 35.2
47.0 36.7

where R is the Rydberg energy (13.606 e¢V) and M2, is
the square of the dipole matrix element for all possible
inelastic scattering processes which can be defined by

5 fAEm 2R Im[ — 1/¢(AE)] d(AE)
M tot = h2Q) 2
0 T P
for AE,,, = o. The term ¢, in (19) is a complicated
function of the dependence of Im[—1/e(g, w)] on
momentum transfer ¢.27 Equation (19) is presented in
its non-relativistic form, appropriate for the energy
range of present interest, but can be modified to include
relativistic effects if required.?” The Bethe equation is
expected to be valid for E > AE; this requirement is dis-
cussed further below. Ashley?® has shown that c,,, may
be a function of E, but we have found no evidence for
such a dependence in our analysis.
The IMFP J, corresponding to g, is

(20)

A= 1/n,04 (1)
With values for the constants inserted, (21) becomes
AE

A= e, )
= AE/[ap In(yE)] A V)

where y = 4c,0,/R energies have been expressed in eV
and the density in g cm ™3,

Excitations of valence electrons give the major contri-
bution to g, in (19) and it is convenient for some appli-
cations to reformulate the Bethe equation in terms of an
average excitation energy AE, and a corresponding
oscillator strength bN, where N, is the total number of
valence electrons per atom or molecule and b is a
parameter expected to be approximately unity.?>® In this
reformulation,

M2, = RbN,/AE, ~ RN,/AE, (23)
so that (22) becomes
' _ 2.12E
' E,’(b/AE,)In(yE)
= E/[E,’8 InG:E)] A (24)

where E, = 28.8(N, p/A)'/* is the free-electron plasmon
energy (m eV) as indicated by (6). Equation (24) was
used in our previous report.” Comparison of (22) and
(24) yields

M2, = 28.88N, = 0/28.8 (25)
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For those materials in which the dominant inelastic
scattering is due to bulk-plasmon excitation (i.e. free-
electron materials), AE, = E,=hw, and (20) can be

written

e~ J*Ame 2RAE Im[ — 1/¢(AE)] d(AE)
tot & A nhZQPZEP

with use of (17) and where the limit AE,, has been
selected to be ~100 eV to emphasize the role of
valence-electron excitations relevant here. Equation (26)
is very similar to (23).

An important point is that the term E, in (24) is
associated with the total number of electrons (usually
valence electrons but possibly including shallow core
electrons in some materials) that are responsible for
most of the inelastic scattering. It is possible to estimate,
very approximately, the relative inelastic scattering
cross-sections of valence electrons and core electrons of
various binding energies.'!® The core-electron cross-
sections scale inversely with binding energy, as sug-
gested by (24).?° The term E, thus represents the
oscillator strength for those electrons that can be identi-
fied as giving the main contribution to the inelastic scat-
tering rather than some other measure of the plasmon
energy, such as the value that might be observed in an
electron energy-loss experiment. The term M2, in (22) is
similarly identified (approximately) in (23) and (26) with
N,, the total number of valence electrons responsible
for the inelastic scattering. The determination of E, or
N, should thus be based on the total number of valence
electrons and of any shallow core levels with binding
energies less than about 30 eV. It is the oscillator
strength sum which is important in this context, not
whether the material is free-electron-like or whether
there is a peak identifiable as a bulk plasmon in the loss
spectrum. Since there are not rigorous partial oscillator-
strength sum rules for excitations associated with
valence-band and core-level electrons,?2 more specific
or exact guidance on the choice of N, for particular
materials cannot be given.

Dependence of IMFPs on electron energy

We have tested whether the Bethe equation (24) pro-
vides a satisfactory description of the energy depen-
dence of the calculated IMFPs in Table 2. As
before,23-26 Fano plots were constructed by plotting
values of (E/A;) versus In E. If the data points lie suffi-
ciently close to a straight line, values of the parameters
B and y in (24) can be found from a linear least-squares
analysis.

For the 31 materials under consideration, linear Fano
plots were found to better than 3% over the electron
energy range 300-2000 eV. Over the energy range 200-
2000 eV, the deviations could be up to 8%. The latter
maximum deviation was considered acceptable in our
search for a simple general formula that could be useful
for predicting IMFPs. Examples of our Fano plots are
shown in Fig. 4 for Al, Cu, Ag and Au; these plots
exhibit a high degree of linearity and do not show the
breaks found previously?® (on account of the more
accurate integration used in evaluating (16)).

8 T T T T
Al
B ]
6 J
4l _
Ag
Y * /
2r J
.
OoF J
Cu
I /M.’ )
ol . ]
0 A N 1 i
100 1000

ELECTRON ENERGY (eV)

Figure 4. Fano plots for Al, Cu, Ag and Au. From (24), the func-
tion Y=212EAE /E ?A, has been plotted versus electron energy
on a logarithmic scale. The plots have been displaced vertically for
clarity. The solid circles show values of Y based on the IMFP data
in Table 2 and the solid lines show linear least-squares fits.

Table 3 lists the values of § and y derived from our
least-squares fits together with the values of N, and E,
used in (24). We show two entries for Bi, one with N, =
5 to represent the valence electrons and another with
N, = 15 to include also the electrons in the O, s levels
that have a binding energy of about 25 eV; we will
comment later on the significance of these two choices.

We note here that the values of y in Table 3 range
from a low of 0.0239 for Ir to a high of 0.109 for C. It is
this variation of y that leads to different dependences of
A; on E in the various materials.

General formula for IMFPs

Since the Bethe equation provides a satisfactory
description of the dependences of the IMFP on electron
energy in each of these 31 materials, we have sought
simple formulae through which the parameters § and y
in (24) might be related to other material constants
(such as E,,, A4, p and N,). We were guided in our search
for a formula for f by the expectation, from (25) and
(26), that B should be approximately inversely pro-
portional to E,. Such a relationship was found to be
useful (and superior to other possible dependences that
were explored) although better results were obtained
with additional consideration of the bandgap energy E,
for non-conductors, as suggested by the results of
Szajman et al.® Examination of the residuals also led to
further improvements. Our final formulae for $ and y
are

B=—252x 1072 + 1.05/(E,> + E})'* + 8.10

x 107%p 27)

and
y =0.151p~04° (28)

where E, has been expressed in eV.
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Table 3. Values of B and y found in the fits of the Bethe equation (24) or
(25) to the calculated IMFPs in Table 2; values are also given for
N, and E, for each material. We list values of MZ, calculated
from the optical data using (20) and from the values of B using
(25). See text for a discussion of the two entries for bismuth

ED B y M?O(

Material N, (eV) (eV-1 A-1) (eV-1) Equation (20) Equation (26)
C 4 204 0.0194 0.109 1.34 2.23
Mg 2 10.9 0.0718 0.0942 3.55 413
Al 3 15.8 0.0461 0.0877 347 3.98
Si 4 16.6 0.0332 0.0908 3.35 3.82
Ti 4 17.7 0.0304 0.0962 3.20 3.50
\ 5 223 0.0219 0.0791 2.84 3.16
Cr 6 26.3 0.0209 0.0664 3.24 3.61
Fe 8 30.6 0.0166 0.05647 3.35 3.82
Ni 10 355 0.0145 0.0397 3.55 4.18
Cu 1" 358 0.0134 0.0358 3.62 4.23
Y 3 11.2 0.0785 0.0779 6.06 6.77
Zr 4 15.4 0.0467 0.0799 4.86 5.38
Nb 5 19.6 0.0291 0.0548 3.73 418
Mo 6 23.0 0.0287 0.0560 4.43 4.95
Ru 8 226 0.0202 0.0565 4.1 4.65
Rh 9 30.0 0.0202 0.0508 4.76 5.23
Pd 10 30.6 0.0148 0.0538 3.85 4.26
Ag 1 298 0.0214 0.0413 5.95 6.77
Hf 4 16.7 0.0509 0.0361 4.98 5.87
Ta 5 195 0.0500 0.0353 6.10 7.19
w 6 22.9 0.0405 0.0348 5.96 7.00
Re 7 25.6 0.0404 0.0320 6.87 8.15
Os 8 281 0.0289 0.0308 5.62 6.65
Ir 9 29.7 0.0230 0.0239 5.28 5.95
Pt 10 30.2 0.0239 0.0338 5.89 6.89
Au 11 299 0.0248 0.0332 6.81 7.85
Bi 5 14.0 0.0648 0.0623 8.22 9.33
Bi 15 242 0.0216 0.0523 8.22 9.33
LiF 8 26.0 0.0133 0.0844 2.78 3.06
Sio, 16 22.0 0.0136 0.0681 6.84 7.83
ZnS 18 25.0 0.0134 0.0819 6.14 6.95
Al,O, 24 27.9 0.0149 0.0570 9.05 10.3

We have compared values of § and y calculated from PN S S R N A
(27) and (28) for each of the 31 materials with the actual B o ]
values listed in Table 3. The resulting errors in § and y 40
are plotted in Figs 5-8 against the errors in the f-sum - o -
and ps-sum rules for each material (shown in Table 1). o+ ©
These plots were made to determine whether the errors g20r ° 7
in § and y were associated, at least in part, with defi- - + o i
ciencies of the optical data for particular materials. No = + 0o O
obvious correlations were found in Figs 5-8 although, e °F g%o -
as noted earlier, the internal-consistency checks on the e L *o o i
optical data given by (17) and (18) emphasize spectral @ w ©°
regions different from that most significant in our —20 |- 00 4
IMFP calculations.

We have compared IMFP values calculated from our B .
general formula (24), (27) and (28) with the IMFP values _40 . .
shown in Table 2 for this group of 31 materials. For any
one material, the IMFP values from the general formula a0 20 o 20 a0

at energies between 200 and 2000 eV (100 eV intervals)
were systematically lower or higher than those listed in
Table 2. We have chosen' to express the deviations
between the two sets of values for each material in
terms of an RMS difference even though the differences

ERROR IN {-SUM RULE (%)

Figure 5. Plot of errors in f (the percentage difference between
the values calculated from (27) and the values listed in Table 3)
versus the errors in the f-sum rule (Tabie 1) for the 31 materials
(O elements, + compounds).
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Figure 6. Piot of errors in y (the percentage difference between
the values calculated from (28) and the values listed in Table 3)
versus the errors in the f-sum rule (Table 1) for the 31 materials
(O elements, + compounds).
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Figure 7. Plot of errors in 8 versus the errors in the ps-sum rule
for the 31 materials. See caption to Fig. 4.
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Figure 8. Plot of errors in y versus the errors in the ps-sum rule

for the 31 materials. See caption to Fig. 5.

Table 4. Root-mean-square difference between the
IMFP values shown in Table 2 and the
IMFP values calculated from (24), (27)
and (28) and the values of E, shown in
-Table 3. The sign indicates whether the
IMFP values calculated with (24) are
systematically lower (—) or higher (+)
than the values in Table 2

Material RMS difference (%)
C -32
Mg -6
Al 4
Si® -19
Ti -14
A -14
Cr 5
Fe 6
Ni 16
Cu 6
Y 10
Zr 4
Nb ~-17
Mo 4
Ru -1
Rh 6
Pd -18
Ag 1"
Hf ~7
Ta 16
w 11
Re 21
Os -7
Ir =27
Pt -1
Au -5
Bi® 14
Bic -16
LiFd -6
Si0,° -26
Znsf -31
Al,0,° -2

“E;=1.1eV

°N,=5

°N,=15

"Eg =11.8 eV

°E,=9.1 eV

fE,=3.6 eV

9E,=9.0 8V

were systematic rather than random. Table 4 lists the
RMS differences for our materials, the sign indicating
whether the results from the general formula were
higher (positive) or lower (negative) than those shown in
Table 2. The maximum RMS difference in Table 4 is
32% and the average RMS difference is about 12%.
These differences were not considered excessive in view
of the uncertainties in the optical data (Table 1), the
empirical basis for (27) and (28), and the small number
of non-conductors in our data set.

Comparisons of IMFP results with other IMFP and AL
data

We now present comparisons of our IMFP values,
results from the general formulae (24), (27) and (28), pre-
dictions from other IMFP and AL formulae and avail-
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Figure 9. Comparison of IMFP and AL results for silicon. The
solid line shows IMFP values calculated from (1) and (16), as
listed in Table 2; the curve devoted TPP is the result of the general
formula (24), (27) and (28) using parameter values for Si; the
curve designated SLJL is the IMFP result of Szajman et al.?
(29a); and the curve denoted SD is the AL result of Seah and
Dench,® (30). The points show experimental AL values: O,
Klasson et al.;*° @, overlapping results of Flitsch and Raider®' and
of Ebel and Lieble.32

able AL measurements. Figures 9-13 show these
comparisons for Si, Mo, W, SiO, and Al,O;; similar
comparlsons have been pubhshed previously for Al, Cu,
Ag and Au.® The solid lines in these figures show our
IMFP values (Table 2) and the curves labeled TPP indi-
cate the results from the general formula (with param-
eter values appropriate for each material, as listed in
Tables 3 and 4). All of the curves and most of the AL
data in Figs 9-13 are for E > 200 eV so that the fam-
iliar minimum in 4, is not shown.
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©
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Figure 10. Comparison of IMFP and AL results for molybdenum;
see caption to Fig. 9. The open circles are the AL values of Tarng
and Wehner.3?

ELECTRON ENERGY (eV)

Figure 11. Comparison of IMFP and AL results for tungsten; see
caption to Fig. 9. The points show AL values: @ Carlson and
McGuire;3* O Tarng and Wehner.33

The curves denoted SLIL in Figs 9-13 show the sim-
plified IMFP formula of Szajman et al.® for E > 300
ev:

A~ 1.8EE*/E 2 A (29a)

where E is the centroid value in the energy-loss function
Im[ — 1/e(w)] in eV. For non-conductors, Szajman et al.
report that E ~ E, + E,. For free-clectron-like solids,
E ~ E, and (29a) becomes

A~ L8E¥E A (29b)

Seah and Dench® have analysed many AL measure-
ments and have derived the following empirical rela-
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Figure 12. Comparison of IMFP and AL results for silicon
dioxide; see caption to Fig. 9. The points show AL values: +
Kiasson et al.;3° O Fiitsch and Raider;3' @ Ebel and Lieble;** B
Hill et al.;% [] Ishizaka et a/.;3® and x Hattori and Nishira.3”
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Figure 13. Comparison of IMFP and AL results for aluminium

oxide; see caption to Fig. 9. The open circles are the AL values of
Battye et a/.3®8

tions for the AL, J,, for different classes of materials.
They find for elements:

Ay =538aE~2 + 0.41a%2E'? nm (30a)
and for inorganic compounds
A, =2170aE~% + 0.72a%2EY? nm (30b)

where a is the average monolayer thickness (in nm)
given by

a®=10*"A4/pn, N, (30c)

and n, is the number of atoms in a molecule. The lines
labeled SD in Figs 9-13 are plots of (30).

Figures 9-13 contain AL measurements for Si,3%—32
Mo,?? W,33:34 §j(0,30-32:35-37 and A1,0,.%® The newer
AL measurements for Si3*-32 in Fig. 9 at 1150 and 1380
eV have been confirmed by other measurements.36-37-39
These plots and those published earlier® indicate that
our calculated IMFP values are comparable in magni-
tude to the published ALs although it is difficult to
determine whether a particular result is ‘correct’ on
account of likely systematic errors in the AL measure-
ments or in the IMFP calculations.! In the relatively
few cases in which replicate AL measurements have
been made on the same material in different labor-
atories, it is not unusual to find discrepancies of up to
about 100%. It is therefore hard even to confirm
whether the IMFPs are systematically higher than the
ALs, as expected,? although our plots indicate that this
may be likely.

The Szajman et al.® formula, (29a) gives IMFP results
similar in magnitude and energy dependence to our
values but there are large differences in IMFP magni-
tudes for Cu, SiO, and Al,O,. A probable reason for
these differences is the assumption by Szajman and
Leckey*® (whose work was the foundation for (29)) that
all the valence-electron oscillator strength is associated
with a single mode of energy loss. In reality, there is
oscillator strength distributed over other energy-loss

modes that reduces the single-mode loss intensity and
which has the net effect of reducing the total inelastic
scattering cross-section or increasing the IMFP. Our
use of the energy-loss function allows us to include all
energy-loss modes, properly weighted, for both valence
and core electrons. Our IMFP values for Cu, SiO, and
Al,0; (and also for Al, Ni, Ag and Au) agree well with
those published by Ashley et al.!%4!

Our IMFP values are similar to the AL results from
the Seah and Dench formula (30) for most materials.

'The energy dependence of (30), however, is rather differ-

ent than we find for most of our IMFP results.

Figures 9-13 also show graphically the degree of cor-
respondence between our IMFP values and the results
given by (24), (27) and (28). Even for a material such as
SiO, which has a 26% difference between results from
our calculations and our general formula, Fig. 12 indi-
cates that this difference is, unfortunately, not signifi-
cantly worse than the variability in AL results.

DISCUSSION

Our IMFP calculations are based on the assumption
that the Born approximation is valid and on the neglect
of vertex corrections, self-consistency, exchange and cor-
relation.® For E > 200 eV, these assumptions are esti-
mated to introduce errors of the order of 10% for
free-electron-like 'materials; for other materials, the
errors could be larger. Another source of uncertainty
arises from approximations leading to (7). We do in fact
obtain quantitatively reasonable IMFP values since
inelastic electron scattering occurs predominantly in the
forward direction, with small momentum transfer, so
that the dependence of the inelastic scattering probabil-
ity on energy loss is closely related to Im[ —1/¢(0, w)].
The g-dependence of Im[ —1/&(q, w)] is not well known
for non-free-electron-like materials, however, and it is
difficult to estimate the errors associated with our use of
the single-pole approximation in (15). The latter
approximation limits our present IMFP calculation to
electron energies above 200 eV but we are planning in
the future to compute IMFPs with (14) which should
yield valid results for energies above about 50 eV.

The calculated IMFP values are expected to have
errors due to uncertainties in the experimental optical
data. As discussed earlier, errors in the sum rules for the
dielectric function (such as those presented in Table 1)
give an indication of the overall quality of the optical
data. The sum rule errors should not, however, be con-
sidered necessarily as IMFP errors since the IMFP cal-
culation using (16) emphasizes optical data in the
vicinity of 5-100 eV. Large errors in the sum rules do
not directly lead to large IMFP errors nor do small sum
rule errors necessarily suggest small IMFP errors.
Figures 5-8 do not show any correlation between sum
rule errors and errors in § and y (the differences
between values calculated from (27) and (28) and those
listed in Table 3). The RMS sum rule errors are compar-
able to the RMS value of the errors listed in Table 4
between the IMFP values calculated here and those
obtained from the general formula and, given the
empirical nature of (27) and (28) and the uncertainties of
the model, it was not judged useful to seek higher accu-
racy.
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Figure 14. Plots of IMFPs versus electron energy for the 27 ele-
ments (solid lines) and four compounds (dashed lines).

The total uncertainties arising from the approx-
imations in our IMFP algorithm are likely to be sys-
tematic; the IMFP results in Table 2 may thus be
systematically high or low compared to the true values.
Nevertheless, we believe that we can determine with
reasonable accuracy both the IMFP material depen-
dence at particular electron energies and the IMFP
energy dependence for particular materials.

Figure 14 shows a summary plot of our calculated
IMFPs for the 27 elements and four compounds as a
function of electron energy. At any energy, the ratio of
the largest IMFP to the smallest IMFP is about 2.5. We
expect that a larger range of IMFPs would be found if
materials of lower density (e.g. polymers and alkali
metals) had been included. While we have been able
here to calculate IMFPs for about a third of the solid
elements, we have so far computed IMFPs for only four
compounds. We hope to remedy this deficiency shortly
but, in the meantime, Fig. 14 should not be used to indi-
cate a typical IMFP range for compounds.

Our general IMFP formula, (24), (27) and (28), sum-
marizes in compact form the IMFP dependences on
material and electron energy. The material dependence
in this formula occurs principally through the param-
eter § and to a lesser extent through the parameter 7.
Our strategy in developing this formula was to use as
much physical information available as possible. The
Bethe equation for inelastic electron scattering is
expected to be valid at ‘sufficiently high’ electron ener-
gies; the parameter § is then simply related to dielectric
data, as indicated by (20) and (25), and the parameter y
is, in principle, calculable from theory.2”-2® Previous
analyses?>'2® have shown that the Bethe equation is
empirically valid for both IMFP and the AL data over
an energy range of typically 100-2000 eV but that the
values of B in the AL analysis are higher and those of
y lower than expected. While AL and IMFP values for
a given material may be of comparable value, there
could be differences in the values of § and y for each set
of data in the energy range of interest for AES and XPS.

That is, for E <2000 eV, the energies are not high
enough for § and y to have attained their asymptotic
values.

Detailed examination of the Fano plots (such as in
Fig. 4) shows small changes of slope as a function of
electron energy. The average slopes over the 200-2000
eV energy range yield values of M2, from (25) that for
most of the materials exceed the M2, values expected
from the optical data via (20), by about 10-20%, as
indicated in Table 3. The only exception is for carbon;
here, the value of M2, from (20) has been calculated
with a density of 1.5 g cm™3, as reported with the
optical data,'’ although the actual density might be
higher (e.g. 1.8-2.1 g cm~3) and the apparent discrep-
ancy in Table 3 would then be less. The Fano plots do
not reach their asymptotic slopes until E > 5 keV. The
general formula, (24), (27) and (28), should therefore not
be used for electron energies outside the range 200-2000
ev.

Both (27) and (28) are empirical in that they result
from least-squares fits of the values of § and y for our 31
materials (Table 3) to selected material parameters and
to various combinations of these parameters. We
expected (from (25) and (26)) that g should be approx-
imately inversely proportional to E,; the additional
terms in (27) led to better least-squares fits. Since only
five non-conductors are included in this analysis, it is
possible that IMFP calculations for additional non-
conductors may lead to modifications to (27).

For free-electron-like materials, it would be expected
that y should be inversely proportional to E,. Indeed,
(28) shows an inverse dependence close to the square
root of the density, but we were not able to find a better
dependence involving (4/N,) although many of our
materials are non-free-electron-like.

The material-dependence of y (Table 3 and (28)) leads
to an IMFP energy dependence that is material-
dependent. The range of y values in Table 3 (0.0239 to
0.109) is qualitatively similar to the range found in an
analysis of AL data?® for nine materials (0.005 to 0.067)
and to the range found from an analysis of IMFP
data?® for Al, Cu, Ag and Au (0.024 to 0.13). The quan-
titative difference in y-values for IMFP and AL data is
due to the fact that the electron energies are not high
enough to be in the asymptotic regime in the AL mea-
surements. The material-dependence of y originates
from differing spectral distributions of the energy-loss
functions, Im[—1/¢(w)], for different materials and
overcomes a deficiency of the Szajman et al.® and Seah
and Dench? formulae (29) and (30).

We now comment further on the choice of N, in the
calculation of E, for (24). Table 3 contains two extreme
choices of N, for Bi. If N, is chosen to be 5, the number
of valence electrons, E, = 14.0 ¢V, and the value of 8
calculated from (27) is 0.0577, a value 11% lower than
that found from the fit to the calculated IMFPs for Bi.
If, however, N, is chosen to be 15 (including the 10 5d
electrons), E, = 24.2 ¢V, and the value of g from (27) is
found to be 0.0261, a value 21% higher than that found
in the fit to the Bi IMFPs. Despite the large range in
the choice of N, (which corresponds to the limits in the
likely oscillator strength contributing to the inelastic
scattering), the resulting values of f do not differ
greatly. The IMFP values calculated using (24) corre-
spondingly do not differ substantially from the IMFP
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values for Bi listed in Table 2, as shown in Table 4.

While our general IMFP formula is empirical, as
described above, it is based on the well-established
Bethe equation. Since this equation has a sound physi-
cal basis, we believe the general formula could be suc-
cessfully utilized with other materials. No substantial
difference, like that between (30a) and (30b) for elements
and inorganic compounds, is to be expected. Modifi-
cations may, however, be made to our formula as we
perform IMFP calculations for additional materials,
particularly compounds, and extend the calculations to
lower electron energies through use of (14).

The difference between IMFP and AL values for a
given material may only be about 15-30%.2 Differences
of this magnitude are less than the errors likely in many
AL measurements. While the absolute error in our
IMFP calculations is not well known, we believe our
general IMFP formula should be a useful guide to AL
values required in quantitative analysis by AES or XPS.

Specifically, our formula gives information on the
material-dependence and energy-dependence of the
IMFP that we consider more reliable than that given by
the IMFP formula of Szajman et al.® or the AL formula
of Seah and Dench.? It would clearly be very useful to
have an algorithm through which IMFPs from our
general formula could be converted to ALs.

SUMMARY

We have presented new IMFP values for 200-2000 eV
electrons in 27 elements and four compounds that have
been calculated using an algorithm due to Penn.’ Our
IMFP results for each material were satisfactorily fitted
to the Bethe equation for inelastic electron scattering in
matter and the two Bethe parameters were empirically
related to several material constants (number of valence
electrons, bulk density, atomic or molecular weight and
band-gap energy for non-conductors). We have thus
obtained a general IMFP formula which is reliable, in
comparisons to our IMFP values, to an average uncer-
tainty of 12%. We believe this general IMFP formula is
a useful guide for predicting the IMFP dependence on
electron energy for a given material and the material-
dependence for a given energy.

IMFP values are expected to exceed electron attenu-
ation lengths for a given material by up to about 15—
30%,> the difference being greatest for high atomic
numbers and low electron energies. We therefore
suggest that our general IMFP formula should be a
useful but less accurate guide to ALs, particularly for
giving information on the AL dependences on material
and energy needed for quantitative surface analysis by
AES and XPS. Further work is required to extend our
formula to electron energies below 200 eV and above
2000 eV. IMFP calculations are also needed for addi-
tional compounds to ensure that the IMFP formula is
reliable for a wide range of materials.
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